1. If x+1x=2x + \frac{1}{x} = 2, then the value of x2+1x2x^2 + \frac{1}{x^2} is:
A) 0
B) 2
C) 4
D) 6
Answer: C) 4
Solution:
(x+1/x)2=x2+1/x2+2(x + 1/x)^2 = x^2 + 1/x^2 + 2
⇒ 22=x2+1/x2+22^2 = x^2 + 1/x^2 + 2
⇒ 4=x2+1/x2+24 = x^2 + 1/x^2 + 2
⇒ x2+1/x2=2x^2 + 1/x^2 = 2
2. If sin A = 3/5 and A is acute, find cos A.
A) 4/5
B) 5/3
C) 3/4
D) 1
Answer: A) 4/5
Solution:
cosA=1−sin2A=1−9/25=16/25=4/5\cos A = \sqrt{1 – \sin^2 A} = \sqrt{1 – 9/25} = \sqrt{16/25} = 4/5
3. The value of tan45∘+cot45∘\tan 45^\circ + \cot 45^\circ is:
A) 0
B) 1
C) 2
D) 4
Answer: C) 2
Solution: tan45∘=1\tan 45^\circ = 1, cot45∘=1\cot 45^\circ = 1, so sum = 2
4. If x2−5x+6=0x^2 – 5x + 6 = 0, then the value of xx is:
A) 2 and 3
B) 1 and 6
C) 3 and 4
D) 0 and 6
Answer: A) 2 and 3
Solution: Factor: (x−2)(x−3)=0(x – 2)(x – 3) = 0
5. If A=[2345]A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}, find det(A)
A) 10
B) -2
C) -2
D) 2
Answer: C) -2
Solution:
Determinant = (2×5) – (3×4) = 10 – 12 = -2
6. log28\log_2 8 is equal to:
A) 2
B) 3
C) 4
D) 1
Answer: B) 3
Solution:
23=8⇒log28=32^3 = 8 \Rightarrow \log_2 8 = 3
7. Area of a triangle with base = 6 cm and height = 8 cm is:
A) 48 cm²
B) 24 cm²
C) 30 cm²
D) 12 cm²
Answer: B) 24 cm²
Solution:
Area = (1/2) × base × height = (1/2) × 6 × 8 = 24 cm²
8. What is the sum of first 50 natural numbers?
A) 1225
B) 1275
C) 1325
D) 1000
Answer: B) 1275
Solution:
Sum = n(n+1)/2=50×51/2=1275n(n+1)/2 = 50×51/2 = 1275
9. If sinθ=513\sin \theta = \frac{5}{13}, and θ\theta is acute, find cosθ\cos \theta
A) 12/13
B) 5/13
C) 1/2
D) 13/5
Answer: A) 12/13
Solution:
Using identity: cosθ=1−sin2θ=1−25/169=144/169=12/13\cos \theta = \sqrt{1 – \sin^2 \theta} = \sqrt{1 – 25/169} = \sqrt{144/169} = 12/13
10. What is the value of (a+b)2−(a−b)2(a + b)^2 – (a – b)^2?
A) 4ab4ab
B) a2−b2a^2 – b^2
C) 2ab2ab
D) a+ba + b
Answer: A) 4ab
Solution:
(a+b)2−(a−b)2=a2+2ab+b2−(a2−2ab+b2)=4ab(a + b)^2 – (a – b)^2 = a^2 + 2ab + b^2 – (a^2 – 2ab + b^2) = 4ab
11. The derivative of x2x^2 is:
A) 1
B) x
C) 2x
D) x^2
Answer: C) 2x
12. Solve: 1x+1x+1=1\frac{1}{x} + \frac{1}{x+1} = 1
A) x = 1
B) x = -1
C) x = 2
D) x = 0
Answer: A) x = 1
Solution:
Take LCM: (x+1+x)/(x(x+1))=1(x + 1 + x)/(x(x+1)) = 1 ⇒ 2x+1=x(x+1)2x + 1 = x(x + 1) ⇒ Solve to get x = 1
13. The angle between hour and minute hand at 3:00 is:
A) 90°
B) 60°
C) 75°
D) 45°
Answer: A) 90°
Solution:
Each hour = 30°; 3 hours = 90°
14. A train moves at 60 km/hr. How far will it travel in 30 minutes?
A) 15 km
B) 20 km
C) 30 km
D) 25 km
Answer: B) 30 km
Solution:
Time = 0.5 hours ⇒ Distance = Speed × Time = 60 × 0.5 = 30 km
15. The LCM of 12 and 18 is:
A) 36
B) 6
C) 72
D) 24
Answer: A) 36
16. Solve: (x−1)(x+2)=0(x – 1)(x + 2) = 0
A) x = 1 or -2
B) x = 2 or 1
C) x = -1 or 2
D) x = 0 or 2
Answer: A) x = 1 or -2
Solution: Solve each factor.
17. If a circle has radius 7 cm, its area is:
A) 154 cm²
B) 44 cm²
C) 49 cm²
D) 21 cm²
Answer: A) 154 cm²
Solution:
Area = πr² = (22/7)×7×7 = 154 cm²
18. If the roots of a quadratic are equal, then the discriminant is:
A) > 0
B) < 0
C) = 0
D) Can’t be found
Answer: C) = 0
Solution:
D = b² – 4ac ⇒ Equal roots means D = 0
19. Find the value of cos230∘+sin230∘\cos^2 30^\circ + \sin^2 30^\circ
A) 1
B) 0
C) 2
D) 1/2
Answer: A) 1
Solution: Always true: cos2θ+sin2θ=1\cos^2 \theta + \sin^2 \theta = 1
20. Simplify: (a2−b2)(a−b)\frac{(a^2 – b^2)}{(a – b)}
A) a+ba + b
B) a−ba – b
C) a2+b2a^2 + b^2
D) aa
Answer: A) a+ba + b
Solution:
Difference of squares: (a−b)(a+b)/(a−b)=a+b(a – b)(a + b)/(a – b) = a + b

























