

**DREAMERS EDU HUB**  
**PRE-BOARD EXAMINATION PAPER 2025-26**

**CLASS 12<sup>th</sup>**

**CHEMISTRY**

**20.12.2025**

**Time Allowed: 3 Hours**

**Maximum Marks: 70**

**General Instructions**

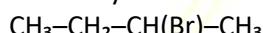
There are 33 questions in this question paper with internal choice.

**SECTION A: 16 MCQs × 1 mark = 16 marks**

**SECTION B: 5 VSA × 2 marks = 10 marks**

**SECTION C: 7 SA × 3 marks = 21 marks**

**SECTION D: 2 Case-based questions × 4 marks = 8 marks**


**SECTION E: 3 LA × 5 marks = 15 marks**

**Use of calculators is NOT allowed.**

**All questions are compulsory.**

**SECTION A — Multiple Choice Questions(1 mark each)**

1. Identify the IUPAC name of the following compound:



a) 3-Bromobutane      b) 2-Bromobutane      c) 1-Bromobutane      d) 2-Methyl-2-bromopropane

2. Which compound gives a positive Tollen's test?

a) Propanone      b) Benzaldehyde      c) Cyclohexanone      d) 2-Butanone

3. Which metal forms interstitial hydrides?

a) Na      b) Ca      c) Pd      d) Al

4. Colligative property used for molar mass determination:

a) Surface tension      b) Osmotic pressure      c) Refractive index      d) Viscosity

5. Which shows optical isomerism?

a)  $[\text{Co}(\text{NH}_3)_6]^{3+}$       b)  $[\text{Cr}(\text{en})_3]^{3+}$       c)  $[\text{Ni}(\text{CN})_4]^{2-}$       d)  $[\text{CuCl}_4]^{2-}$

6. Hydrolysis of lactose yields:

a) Glucose only      b) Glucose & fructose      c) Glucose & galactose      d) Fructose only

7. Compound showing Cannizzaro reaction:

a) Acetone      b) Benzaldehyde      c) Propanal      d) Butanone

8. Hinsberg reagent is

a)  $\text{HCl} + \text{ZnCl}_2$       b) Benzene sulphonyl Chloride      c)  $\text{AlCl}_3$       d)  $\text{KMnO}_4$

9. Reagent reducing nitrobenzene to aniline:

a)  $\text{Sn}/\text{HCl}$       b)  $\text{H}_2\text{O}_2$       c)  $\text{KMnO}_4$       d)  $\text{K}_2\text{Cr}_2\text{O}_7$

10. Highest electrical conductivity:

a) Fe      b) Cu      c) Zn      d) Ag

11. Van't Hoff factor for  $\text{KCl}$  (aqueous):

a) 1      b) 2      c) 3      d) 4

12. Geometry of  $[\text{Ni}(\text{CN})_4]^{2-}$ :

a) Tetrahedral      b) Square planar      c) Octahedral      d) Square pyramidal

**DREAMERS EDU HUB**  
**PRE-BOARD EXAMINATION PAPER 2025-26**

**CLASS 12<sup>th</sup>**

**CHEMISTRY**

**20.12.2025**

13. Tollen's test is used to detect:

a) Amines      b) Aldehydes & Ketones      c) Alcohols      d) Acids

14.  $r = k[A]^2$  means reaction is:

a) Zero order      b) 1st order      c) 2nd order      d) 3rd order

15. Assertion: HF has highest boiling point among HX

Reason: HF has H-bonding

a) Both true, R correct    b) Both true, R incorrect    c) A false, R true    d) Both false

16. Assertion: Phenol is acidic

Reason: Phenoxide ion is resonance stabilized

a) Both true, R correct    b) Both true, R incorrect    c) A false, R true    d) Both false

**SECTION B — Very Short Answer(2 marks each)**

17. Calculate molar mass of solute X if freezing point depression for 5 g of solute in 100 g water is same as 9 g of urea ( $M=60$  g/mol).

18. What is lanthanoid contraction? State one consequence.

19. A first order reaction is 20 % completed in 40 mins, calculate time required for 60% completion?

20. (a) Define pseudo first order reactions.

(b) Define molecularity.

21. Explain why tertiary alkyl halides undergo SN1 more readily than primary halides. Write the mechanism.

**SECTION C — Short Answer(3 marks each)**

22. A first-order reaction has  $k = 4 \times 10^{-3} \text{ s}^{-1}$ .

Calculate:

a)  $t_{1/2}$       b) Change in rate if concentration doubled.

23. Explain:

(a) High enthalpy of atomisation in transition metals    (b)  $[\text{Ni}(\text{CO})_4]$  forms easily but not  $[\text{Ni}(\text{NH}_3)_6]^{3+}$

24. Identify A, B, C:

A:  $\text{C}_2\text{H}_6\text{O} \rightarrow$  strong Oxidation  $\rightarrow$  B

B + Na  $\rightarrow$  C +  $\text{H}_2\uparrow$

25. Convert:

(a) Chlorobenzene  $\rightarrow$  Aniline    (b) Benzyl chloride  $\rightarrow$  Benzyl alcohol    (c) Propanone  $\rightarrow$  Propan-2-ol

26. Calculate emf of cell:

$\text{Zn}|\text{Zn}^{2+} (0.1\text{M}) || \text{Cu}^{2+} (1\text{M})|\text{Cu}$

$E^\circ_{\text{cell}} = 1.10 \text{ V}$

27. Explain mechanism of dehydration of ethanol using conc.  $\text{H}_2\text{SO}_4$ .

**DREAMERS EDU HUB**  
**PRE-BOARD EXAMINATION PAPER 2025-26**

**CLASS 12<sup>th</sup>**

**CHEMISTRY**

**20.12.2025**

28. State first law of thermodynamics . 0.02 Faraday electricity is passed through molten  $\text{AlCl}_3$ . Calculate mass of Al deposited.

**SECTION D — Case Based Questions(4 marks each)**

29. A chemistry teacher is demonstrating the behaviour of different transition-metal ions to a class. She prepares three solutions containing  $\text{Ti}^{4+}$ ,  $\text{Mn}^{2+}$ , and  $\text{Zn}^{2+}$  ions. The students notice that the  $\text{Ti}^{4+}$  solution is colourless,  $\text{Mn}^{2+}$  shows magnetic behaviour, and  $\text{Zn}^{2+}$  always appears in the +2 oxidation state in textbooks and laboratory experiments. The teacher explains that these properties depend on the **electronic configurations** of the ions and the presence or absence of **unpaired d-electrons**.

Using the information given, answer the following questions:

- a) Why  $\text{Ti}^{4+}$  is colourless? (1)
- b) Why  $\text{Mn}^{2+}$  is paramagnetic? (1)
- c) Why  $\text{Zn}^{2+}$  doesn't show variable oxidation states? (1)
- d) Which element shows maximum oxidation states in 3d series .

30. A chemistry teacher is explaining colligative properties and gas solubility to her class. She begins by discussing how the number of particles formed in a solution affects properties like boiling point elevation and freezing point depression. She introduces the **van't Hoff factor (*i*)**, which tells students how many particles a solute produces upon dissociation.

Next, she dissolves  $\text{K}_2\text{SO}_4$  in water and explains that electrolytes may dissociate completely into ions, increasing the value of *i*. After that, she prepares a sodium hydroxide (NaOH) solution by dissolving **10 g NaOH in 250 mL of water** and asks the students to calculate its molarity. Finally, she explains how the solubility of gases in liquids is governed by **Henry's Law**.

Using the passage, answer the following questions:

- a) Define van't Hoff factor. (1)
- b) *i* for  $\text{K}_2\text{SO}_4$  if fully dissociated. (1)
- c) (i) Calculate Molarity of 10 g NaOH IN 250ml solution . (2)  
(ii) State Henry Law .

**SECTION E — Long Answer(5 marks each)**

31.(a) Essential amino acids — define (1)  
(b) Name two reducing sugars (1)  
(c) Write the reaction of glucose with HI ? (1)  
(d) Draw Cyclic structure of  $\beta$ -D-glucose and  $\beta$ -D fructose (2)

32.(a) (i) Draw geometrical isomers of  $[\text{Pt}(\text{NH}_3)_2\text{Cl}_2]$  . (1)  
(ii) Write main postulates of collision theory . (2)  
(b) Why  $[\text{Fe}(\text{CN})_6]^{4-}$  is low spin? Write the hybridisation of central metal atom in this compound. (2)

33.(a) Write Hoffmann bromamide reaction and Swarts reaction . (2)  
(b) Distinguish primary vs secondary amines. write the reactions involved . (2)  
(c) Test for primary , secondry and tertiary halides . (1 )