

MOST EXPECTED QUESTIONS- GEOMETRY (DREAMERS EDU HUB – NDA)

1. The ratio in which the line $3x + y - 9 = 0$ divides the segment joining the points $(1,3)$ and $(2,7)$, is
(a) 1:2
(b) 4:3
(c) 3:4
(d) None of these

2. The points $(k, 2 - 2k)$, $(-k + 1, 2k)$ and $(-4 - k, 6 - 2k)$ are collinear for
(a) all values of k
(b) $k = -1$ or $\frac{1}{2}$
(c) $k = -1$
(d) no values of k

3. If the coordinates of two opposite vertices of a square are $(6, -3)$ and $(-2, 3)$, then area of square is
(a) 50 sq units
(b) 25 sq units
(c) 35 sq units
(d) None of these

4. Two vertices of a triangle are $(3, -5)$ and $(-7, 4)$. If its centroid is $(2, -1)$. Then, the third vertex is
(a) $(10, 2)$
(b) $(10, -2)$
(c) $(2, 2)$
(d) None of these

5. If a vertex of a triangle is $(1, 1)$ and the mid-points of two sides through this vertex are $(-1, 2)$ and $(3, 2)$, then the centroid of the triangle is
(a) $(\frac{1}{3}, \frac{7}{3})$
(b) $(1, \frac{7}{3})$
(c) $(-\frac{1}{3}, \frac{7}{3})$
(d) $(-1, \frac{7}{3})$

6. If the line $2x + y = k$ passes through the point which divides the line segment joining the points $(1, 1)$ and $(2, 4)$ in the ratio 3:2, then k equals
(a) $\frac{29}{5}$
(b) 5
(c) 6
(d) $\frac{11}{5}$

7. A triangle with vertices $(4, 0)$, $(-1, -1)$ and $(3, 5)$ is
(a) isosceles and right angled
(b) isosceles but not right angled
(c) right angled but not isosceles
(d) neither right angled nor isosceles

8. The incentre of the triangle with vertices $(1, \sqrt{3})$, $(0, 0)$ and $(2, 0)$ is
(a) $(1, \frac{\sqrt{3}}{2})$
(b) $(\frac{2}{3}, \frac{1}{\sqrt{3}})$
(c) $(\frac{2}{3}, \frac{\sqrt{3}}{2})$
(d) $(1, \frac{1}{\sqrt{3}})$

9. The vertices of a triangle are $A(0,0)$, $B(0,2)$ and $C(2,0)$, then find the distance between its orthocentre and circumcentre.
(a) 0
(b) $\sqrt{2}$
(c) $\frac{1}{\sqrt{2}}$
(d) None of these

10. Orthocentre of the triangle formed by the lines $x - y = 0$, $x + y = 0$ and $x = 3$ is
(a) $(0,0)$
(b) $(3,0)$
(c) $(0,3)$
(d) Cannot be determined

11. If the distance between $(2, 3)$ and $(-5, 2)$ is equal to the distance between $(x, 2)$ and $(1, 3)$, then the values of x are
(a) -6, 8
(b) 6, 8
(c) -8, 6
(d) -7, 7

12. Find the value of k for which the line $(k - 3)x - (4 - k^2)y + k^2 - 7k + 6 = 0$ is parallel to X -axis.
(a) 3
(b) 2
(c) 1
(d) None of these

13. A square is constructed on the portion of the line $x + y = 5$, which is intercepted between the axes on the side of the line away from origin. The equations to the diagonals of the square are
(a) $x - 5, y = -5$
(b) $x = 5, y = 5$
(c) $x = -5, y = 5$
(d) $x - y = 5, x - y = -5$

14. If $A(1,1)$, $B(\sqrt{3} + 1, 2)$ and $C(\sqrt{3}, \sqrt{3} + 2)$ are three vertices of a square, then the diagonal through B is
(a) $y = (\sqrt{3} - 2)x + (3 - \sqrt{3})$
(b) $y = 0$

MOST EXPECTED QUESTIONS- GEOMETRY (DREAMERS EDU HUB – NDA)

(c) $y = x$

(d) None of the above

15. The number of integer values of m for which the x -coordinate of the point of intersection of the lines $3x + 4y = 9$ and $y = mx + 1$ is also an integer, is

(a) 2

(b) 0

(c) 4

(d) 1

16. The perpendicular bisector of the line segment joining $P(1,4)$ and $Q(k, 3)$ has y -intercept -4 . Then, a possible value of k is

(a) -4

(b) 1

(c) 2

(d) -2

17. A straight line through the point $A(3,4)$ is such that its intercept between the axes is bisected at A . Its equation is

(a) $3x - 4y + 7 = 0$

(b) $4x + 3y = 24$

(c) $3x + 4y = 25$

(d) $x + y = 7$

18. If non-zero numbers a, b and c are in HP, then the straight line $\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0$ always passes through a fixed point. That point is

(a) $(1, -\frac{1}{2})$

(b) $(1, -2)$

(c) $(-1, -2)$

(d) $(-1, 2)$

19. A straight line passes through the points $(5,0)$ and $(0,3)$. The length of perpendicular from the point $(4,4)$ on the line is

(a) $\frac{15}{\sqrt{34}}$

(b) $\frac{\sqrt{17}}{2}$

(c) $\frac{17}{2}$

(d) $\sqrt{\frac{17}{2}}$

20. If p is the length of the perpendicular from the origin to the line, whose intercepts with the coordinate axes are $\frac{1}{3}$ and $\frac{1}{4}$, then the value of p is

(a) $\frac{3}{4}$

(b) $\frac{1}{12}$

(c) 5

(d) 12

(e) $\frac{1}{5}$

21. A plane is parallel to XZ -plane, so it is perpendicular to

(a) X -axis

(b) Y -axis

(c) Z -axis

(d) None of the above

22. A point R with x -coordinate 4 lies on the line segment joining the points $P(2, -3, 4)$ and $Q(8, 0, 10)$. Find the coordinates of the point R .

(a) $(4, -2, -6)$

(b) $(4, 2, 6)$

(c) $(4, -2, 6)$

(d) None of these

23. Statement I The coordinates of the point which divides the line segment joining the points $(1, -2, 3)$ and $(3, 4, -5)$ in the ratio 2: 3 internally, are

$\left(\frac{9}{5}, \frac{2}{5}, -\frac{1}{5}\right)$.

Statement II The coordinates of the point which divides the line segment joining the points $(1, -2, 3)$ and $(3, 4, -5)$ in the ratio 2: 3 externally, are

$\left(\frac{19}{2}, \frac{5}{2}, \frac{-1}{2}\right)$.

24. The distance of the point $(1,0,2)$ from the point of intersection of the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and the plane $x - y + z = 16$ is

(a) $2\sqrt{14}$

(b) 8

(c) $3\sqrt{21}$

(d) 13

Directions (Q. Nos. 25-27) Consider the lines

$$L_1: \frac{x+1}{3} = \frac{y+2}{1} = \frac{z+1}{2}; L_2: \frac{x-2}{1} = \frac{y+2}{2} = \frac{z-3}{3}$$

25. The unit vector perpendicular to both L_1 and L_2 is

(a) $\frac{-\mathbf{i}+7\mathbf{j}+7\mathbf{k}}{\sqrt{99}}$

(b) $\frac{-\mathbf{i}-7\mathbf{j}+5\mathbf{k}}{5\sqrt{3}}$

(c) $\frac{-\mathbf{i}+7\mathbf{j}+5\mathbf{k}}{5\sqrt{3}}$

(d) $\frac{7\mathbf{i}-7\mathbf{j}-\mathbf{k}}{\sqrt{99}}$

26. The shortest distance between L_1 and L_2 is

(a) 0 unit

MOST EXPECTED QUESTIONS- GEOMETRY (DREAMERS EDU HUB – NDA)

(b) $\frac{17}{\sqrt{3}}$ units
 (c) $\frac{41}{5\sqrt{3}}$ units
 (d) $\frac{17}{5\sqrt{3}}$ units

27. The distance of the point $(1,1,1)$ from the plane passing through the point $(-1, -2, -1)$ and whose normal is perpendicular to both the lines L_1 and L_2 , is

(a) $\frac{2}{\sqrt{75}}$ unit
 (b) $\frac{7}{\sqrt{75}}$ unit
 (c) $\frac{13}{\sqrt{75}}$ units
 (d) $\frac{23}{\sqrt{75}}$ units

28. The angle between the lines whose direction cosines satisfy the equations $l + m + n = 0$ and $l^2 = m^2 + n^2$, is

(a) $\frac{\pi}{3}$
 (b) $\frac{\pi}{4}$
 (c) $\frac{\pi}{6}$
 (d) $\frac{\pi}{2}$

29. The image of the line $\frac{x-1}{3} = \frac{y-3}{1} = \frac{z-4}{-5}$ in the plane $2x - y + z + 3 = 0$ is the line

(a) $\frac{x+3}{3} = \frac{y-5}{1} = \frac{z-2}{-5}$
 (b) $\frac{x+3}{-3} = \frac{y-5}{-1} = \frac{z+2}{5}$
 (c) $\frac{x-3}{3} = \frac{y+5}{1} = \frac{z-2}{-5}$
 (d) $\frac{x-3}{-3} = \frac{y+5}{-1} = \frac{z-2}{5}$

30. If the lines $\frac{x+1}{2} = \frac{y-1}{1} = \frac{z+1}{3}$ and $\frac{x+2}{2} = \frac{y-k}{3} = \frac{z}{4}$ are coplanar, then the value of k is

(a) $\frac{11}{2}$
 (b) $-\frac{11}{2}$
 (c) $\frac{9}{2}$
 (d) $-\frac{9}{2}$

31. If the angle between the line $x = \frac{y-1}{2} = \frac{z-3}{\lambda}$ and the plane $x + 2y + 3z = 4$ is $\cos^{-1} \left(\sqrt{\frac{5}{14}} \right)$, then λ is equal to

(a) $\frac{3}{2}$
 (b) $\frac{2}{5}$

(c) $\frac{5}{3}$
 (d) $\frac{2}{3}$

32. If $(2,3,5)$ is one end of a diameter of the sphere $x^2 + y^2 + z^2 - 6x - 12y - 2z + 20 = 0$, then the coordinates of the other end of the diameter are

(a) $(4,9,-3)$
 (b) $(4,-3,3)$
 (c) $(4,3,5)$
 (d) $(4,3,-3)$

33. The angle between the lines $2x = 3y = -z$ and $6x = -y = -4z$ is

(a) 30°
 (b) 45°
 (c) 90°
 (d) 0°

34. The plane $x + 2y - z = 4$ cuts the sphere $x^2 + y^2 + z^2 - x + z - 2 = 0$ in a circle of radius

(a) $\sqrt{2}$
 (b) 2
 (c) 1
 (d) 3

35. The equation of the plane containing the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ is $a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$, where

(a) $ax_1 + by_1 + cz_1 = 0$
 (b) $al + bm + cn = 0$
 (c) $\frac{a}{l} = \frac{b}{m} = \frac{c}{n}$
 (d) $lx_1 + my_1 + nz_1 = 0$

36. If $\mathbf{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and \mathbf{b} is a vector such that $\mathbf{a} \cdot \mathbf{b} = |\mathbf{b}|^2$ and $|\mathbf{a} - \mathbf{b}| = \sqrt{7}$, then $|\mathbf{b}|$ is equal to

(a) $\sqrt{7}$
 (b) $\sqrt{3}$
 (c) 7
 (d) 3
 (e) $7\sqrt{3}$

37. If $|\mathbf{a}| = 1$, $|\mathbf{b}| = 4$, $\mathbf{a} \cdot \mathbf{b} = 2$ and $\mathbf{c} = 2\mathbf{a} \times \mathbf{b} - 3\mathbf{b}$, then the angle between \mathbf{b} and \mathbf{c} is

(a) $\frac{\pi}{6}$
 (b) $\frac{5\pi}{6}$
 (c) $\frac{\pi}{3}$
 (d) $\frac{2\pi}{3}$

38. Let $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ be two unit vectors. If the vectors $\mathbf{c} = \hat{\mathbf{a}} + 2\hat{\mathbf{b}}$ and $\mathbf{d} = 5\hat{\mathbf{a}} - 4\hat{\mathbf{b}}$ are perpendicular to each other, then the angle between $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ is

MOST EXPECTED QUESTIONS- GEOMETRY (DREAMERS EDU HUB – NDA)

(a) $\frac{\pi}{6}$
 (b) $\frac{\pi}{2}$
 (c) $\frac{\pi}{3}$
 (d) $\frac{\pi}{4}$

39. If $\mathbf{a} = \frac{1}{\sqrt{10}}(3\hat{\mathbf{i}} + \hat{\mathbf{k}})$ and $\mathbf{b} = \frac{1}{7}(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 6\hat{\mathbf{k}})$, then the value of $(2\mathbf{a} - \mathbf{b}) \cdot \{(\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} + 2\mathbf{b})\}$ is
 (a) -3
 (b) 5
 (c) 3
 (d) -5

40. If $|\mathbf{a}| = 1$, $|\mathbf{b}| = 4$, $\mathbf{a} \cdot \mathbf{b} = 2$ and $\mathbf{c} = 2\mathbf{a} \times \mathbf{b} - 3\mathbf{b}$, then the angle between \mathbf{b} and \mathbf{c} is

(a) $\frac{\pi}{6}$
 (b) $\frac{5\pi}{6}$
 (c) $\frac{\pi}{3}$
 (d) $\frac{2\pi}{3}$

41. The area of the parallelogram whose adjacent sides are $\hat{\mathbf{i}} + \hat{\mathbf{k}}$ and $2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, is

(a) 3
 (b) $\sqrt{2}$
 (c) 4
 (d) $\sqrt{3}$

42. The angle between the vectors $\mathbf{a} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and $\mathbf{b} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ is

(a) $\sin^{-1}\left(\frac{1}{9}\right)$
 (b) $\cos^{-1}\left(\frac{8}{9}\right)$
 (c) $\sin^{-1}\left(\frac{8}{9}\right)$
 (d) $\cos^{-1}\left(\frac{1}{9}\right)$

43. A unit vector perpendicular to both $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ is

(a) $(2\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}})\sqrt{6}$
 (b) $\frac{(2\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}})}{\sqrt{6}}$
 (c) $2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$
 (d) $\frac{3\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}}{\sqrt{6}}$

44. If $|\mathbf{a}| = 5$, $|\mathbf{b}| = 6$ and $\mathbf{a} \cdot \mathbf{b} = -25$, then $|\mathbf{a} \times \mathbf{b}|$ is equal to

(a) 25
 (b) $6\sqrt{11}$
 (c) $11\sqrt{5}$

(d) $11\sqrt{6}$
 (e) $5\sqrt{11}$

45. If the vectors $\mathbf{a} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 4\hat{\mathbf{k}}$, $\mathbf{b} = 4\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and $\mathbf{c} = 2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - \lambda\hat{\mathbf{k}}$ are coplanar, then the value of λ is

(a) 2
 (b) 1
 (c) 3
 (d) -1
 (e) 0

46. If $\mathbf{a} = \hat{\mathbf{j}} - \hat{\mathbf{k}}$ and $\mathbf{c} = \hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}$. Then, the vector \mathbf{b} satisfying $\mathbf{a} \times \mathbf{b} + \mathbf{c} = 0$ and $\mathbf{a} \cdot \mathbf{b} = 3$, is

(a) $-\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}$
 (b) $2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$
 (c) $\hat{\mathbf{i}} - \hat{\mathbf{j}} - 2\hat{\mathbf{k}}$
 (d) $\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}$

47. If \mathbf{a} , \mathbf{b} , \mathbf{c} are three vectors, such that $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$, $|\mathbf{a}| = 1$, $|\mathbf{b}| = 2$, $|\mathbf{c}| = 3$, then $\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}$ is equal to

(a) 0
 (b) -7
 (c) 7
 (d) 1

48. Consider points A, B, C and D with position vectors $7\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$, $\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + 10\hat{\mathbf{k}}$, $-\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ and $5\hat{\mathbf{i}} - \hat{\mathbf{j}} + 5\hat{\mathbf{k}}$, respectively. Then, $ABCD$ is a

(a) square
 (b) rhombus
 (c) rectangle
 (d) None of the above

49. If $|\mathbf{a}| = 7$, $|\mathbf{b}| = 11$, $|\mathbf{a} + \mathbf{b}| = 10\sqrt{3}$, then $|\mathbf{a} - \mathbf{b}|$ equals

(a) 10
 (b) $\sqrt{10}$
 (c) $2\sqrt{10}$
 (d) 20

50. The vector \mathbf{c} , directed along the internal bisector of the angle between the vectors $\mathbf{a} = 7\hat{\mathbf{i}} - 4\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ and $\mathbf{b} = -2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ with $|\mathbf{c}| = 5\sqrt{6}$, is

(a) $\frac{5}{3}(\hat{\mathbf{i}} - 7\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$
 (b) $\frac{5}{3}(5\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$
 (c) $\frac{5}{3}(\hat{\mathbf{i}} + 7\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$
 (d) $\frac{5}{3}(-5\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$